Email Authentication for Receivers

Sebastiaan de Vos — sebastiaan@inboxsys.com - Patrick Ben Koetter — p@sys4.de — Version 0.6, 30.05.2022

Table of contents

1. Risk assessment
2. The right software
3. Check DMARC
3.1. Modular processing
3.1.1. OpenDKIM
3.1.2. OpenDMARC
3.2. Monolithic processing
3.2.1. rspamd
4. Sending DMARC feedback reports
4.1. Best practices for sending
4.2. DMARC feedback reports with OpenDMARC
4.3. DMARC feedback reports with rspamd


mailto:sebastiaan@inboxsys.com
mailto:p@sys4.de

Document history

Title Date Authored by Abbreviation
Email Authentication for 30.05.2022 Sebastiaan de Vos Sdv

Receivers

Version Date Description Abbreviation
0.6 30.05.2022 Migration from old repo PBK

after review of MW

0.5 15.04.2022 Terminologies (From- Sdv
Header / Envelope)

0.4 14.04.2022 Detail correction MK, SdV

0.3 31.03.2022 Notes formulated in more = PBK
detail

0.2 15.03.2022 Migration to Asciidoc PBK

0.1 14.03.2022 First Draft Sdv



Falsifying sender addresses and thus pretending to have a false identity is one of the most common forms of Internet
email fraud. By impersonating someone else, attackers aim to elicit information from their victim (e.g. phishing) or
persuade them to commit an act that is useful to the attackers (e.g. CEO fraud). This leads to mistrust in email in general
on the part of the victims and it causes great economic damage to private individuals as well as to companies. In recent
years, however, email experts have developed several methods to curb this form of abuse.

The three main methods are used in combination to a) legitimise systems sending for an envelope sender domain
(SPF), b) verify the identity of a domain (DKIM) and c) to set a policy (DMARC) on how to deal with messages that do not
meet SPF and DKIV, as well as to receive reports on the current status of possible identity abuse. These three methods
can be summarised with the term "email authentication".

Email Authentication

Email authentication combines the methods of SPF, DKIM and DMARC into a mechanism with which
incoming messages can be checked for authenticity. The methods in themselves provide the
following possibilities:

SPF

SPF allows the identification of whether systems that want to send are legitimated to send on
behalf of an envelope sender domain or not and also specifies how to deal with those that are not
legitimated.

ﬁ DKIM

DKIM allows the detection whether a message has been signed by the domain specified in the
DKIM Signature: header and whether the body or selected headers of the message have been
modified.

DMARC

DMARC requires successful authentication via SPF or DKIM of the From: header domain for a
message. In addition, DMARC specifies which policy should be applied in the event of SPF and
DKIM violations and enables the receipt of so-called feedback reports on the authentication
results of a domain by storing a contact address.

This guide looks at email authentication from the perspective of a receiving mail system. It suggests software and gives
configuration examples for SPF, DKIM and DMARC so that email can be authenticated before acceptance, identity
abuse can be detected, and receivers can be protected from abusive messages. The aim is to only deliver messages that
meet the sender-side guidelines for SPF, DKIM and DMARC.

Email authentication for senders?

It is equally important to legitimise one’s own sender domain(s) with the methods of SPF, DKIM and
DMARC and to make them verifiable for others. Already today, but even more so in the future, the

deliverability of one’s own messages to external systems will essentially depend on correct email
0 authentication.

However, what needs to be done to achieve this is not covered in this document. Information on this
can be found, for example, at https://certified-senders.org or https://dmarc.org. They are aimed
particularly at senders and are mainly limited to how DMARC should be configured.

The following sections show how to identify, evaluate and apply SPF, DKIM and DMARC policies using various open-
source software.


https://certified-senders.org/
https://dmarc.org/

Terminology

Letter Email Part Designation Designation in this
according to RFC document
Sender on the Message Envelope RFC5321.MailFrom Envelope Sender
0 envelope
Receiver on the Message Envelope RFC5321.RcptTo Receiver
envelope
Sender on letter Message Header RFC5322.From From Header

1. Risk assessment

This section covers the risk of SPF, DKIM and DMARC for delayed delivery and loss of legitimate messages.

All three methods take some time to complete their task, but the delay involved is in the range of milliseconds. The
biggest time factor is (potentially sequential) DNS queries for SPF and a DNS query and signature verification for DKIM.
DMARC consists of only one DNS query and has been designed to minimise the impact on delivery:

“Scalabilily is a major issue for systems that need to operate in a system as widely deployed as

current SMTP email. For this reason, DMARC seeks to avoid the need for third parties or pre-
sending agreements between senders and receivers. This preserves the positive aspects of the

current email infrastructure.

— RFC 7489
Section 2.3

When considering the risk of message loss, it is important to understand the basic principle of DMARC: DMARC
publishes guidelines for handling breaches of SPF and DKIM. DMARC requires that an email conforms to at least one of
the two methods, SPF or DMARC. If both methods fail, an email is considered inauthentic.

If an attacker misuses a foreign domain to send an illegitimate message, this will result in the message failing both SPF
and DKIM checks on the shelf. The question on the receiving end is now how to deal with these "errors".

This is where the p-tag policy comes into play. Here DMARC publishes the policy in the DMARC record in the DNS of the
from-header domain with the help of the p-tag. Three values are permitted for the p-tag:

none

If none is set, the sender domain specified in the From: header requests that no action be taken when SPF and
DKIM violations occur.

quarantine
If quarantine is set, the sender domain specified in the From: header requests that the message be accepted but
not delivered directly to the mailbox, but placed in quarantine, e.g. the SPAM folder.

reject

If reject is set, the sender domain specified in the From: header requests that acceptance of the message be
refused and that the message not be delivered.



This mechanism is simple and it works quickly and reliably. However, it may result in legitimate messages also being
rejected if a sender domain (temporarily) fails to maintain its own DMARC policy.

Friendly fire?
e Particularly in larger organisations, it happens time and again that mail systems legitimately send emails on behalf
of the organisation, but these have not been legitimised by SPF. This is the case if the IP addresses of the mail system

used do not appear in the SPF entry of the envelope sender domain. (11,

e Sometimes the DKIM public key material was entered or transmitted incorrectly in the DNS of the DKIM-signing
domain (usually corresponds to the From: header domain) and as a result, although the private signing key is valid,
the verification of the DKIM signature fails.

e Your mail system sends a legitimate message to a mailing list that redistributes the message in a way that is not
compatible with DMARC. A typical problem is when the mailing list keeps the From: header unchanged, but in doing
so either removes the DKIM signature or invalidates it by modifying the message.

These three exemplary scenarios show how a DMARCreject policy jeopardises the delivery of legitimate messages.

In the first two cases, it would be the sender domain’s responsibility to correct the SPF and DKIM configuration and to
use DMARC mounting to ensure that any own configuration errors do not cause delivery problems. For the latter case,
it is the task of the mailing list to carry out the message dispatch in a DMARC-compliant manner. Furthermore, a
procedure called ARC was developed to transport the authenticity of a message across several instances. However,
ARC is at an experimental stage and has therefore not yet become established.

As a receiver, you can optionally configure exceptions to exclude what you consider legitimate and trusted mail
systems from the SPF, DKIM and DMARC checks. Furthermore, you should send DMARC reports so that senders whose

messages violate their own DMARC policy can find out about it and correct it.

2. The right software
Just to set the record straight: A single software product that can do everything perfectly does not exist. Depending on

the use case, however, one or the other software product fits better into your service architecture.

If you prefer a modular architecture or run a mail service that is distributed across multiple instances or even

machines, software that is limited to one aspect such as verifying SPF, authenticating DKIM, applying DMARC policies
and generating feedback reports is better suited than a monolithic application. The following software products are

suitable for this use case:

Modular software

e OpenSPF (http://www.open-spf.org/Software/)

e OpenDKIM (http://www.opendkim.org/)

e OpenDMARC (http://www.trusteddomain.org/opendmarc/)

If, on the other hand, you want an all-in-one solution or operate a mail service that combines everything in one server,
a monolith is more suitable. The following software products are available for this application:

Monolithic software

e rspamd (https:/rspamd.com/)

e Authentication Milter (https://github.com/fastmail/authentication_milter/)

All of the software applications mentioned are subject to an open-source licence and require a Linux or other Unix-like
operating system to run. The following sections show how to configure them for the different tasks.


http://www.open-spf.org/Software/
http://www.opendkim.org/
http://www.trusteddomain.org/opendmarc/
https://rspamd.com/
https://github.com/fastmail/authentication_milter/

3. Check DMARC

Checking an incoming message against a DMARC policy consists of the following steps:

1. Has the sending system been legitimised by the SPF policy of the envelope sender domain?
2. Does the message include a DKIM signature, and can this can be successfully verified?

3. Has the From: header domain published a DMARC policy and was the SPF or DKIM check for the From: header
domain successful?

If this is the case, from the point of view of the DMARC policy there is nothing to prevent the message from being
accepted. If, on the other hand, the sending system or the message violates the DMARC policy, the receiving system
should apply the DMARC policy specifications to any violations.

These three task complexes — SPF, DKIM and DMARC - can be processed successively by software modules or within a
software. Regardless of which architecture you choose, the programmes will put anAuthentication-Results: header in
the checked message — it lists the various check results:

mx.example.com dokumentiert die Prlifergebnisse von sender@example.net

RAW
Authentication-Results: mx.example.com;

dkim=pass header.d=example.net header.s=202203-example.net header.b=dhpvJg\V6;

dmarc=pass (policy=reject) header.from=example.net;

spf=pass (mx.example.com: domain of sender@example.net designates 192.2.0.1 as permitted sender)
smtp.mailfrom=sender@example.net

1. + Falsify examination results

An attacker who deliberately circulates emails with spoofed sender addresses to commit fraud will also attempt
to subvert SPF, DKIM and DMARC by injecting spoofed "verification results" into the emails themselves, in the
form of an Authentication-Results: header.

These fraud attempts can be prevented by specifying for your own programmes which Authentication-
Results: headers they should trust and which they should ignore. This is done by naming a host or domain that
the programmes should trust.

In the following examples, example.com or a subdomain of this domain is always used. Adjust the domain
according to the domain of your own mail platform.

3.1. Modular processing

For modular processing, the OpenDKIM and OpenDMARC software are successively integrated into the processing of
incoming messages via the MILTER interface of the MTA. OpenDMARC takes on two tasks — that of SPF legitimisation
and that of DMARC policy checking.



The DMARC standard only makes SPF checking mandatory and considers the application of valid
DKIM signatures as optional. Therefore, it is practical to have both tasks handled by one application
(here: OpenDMARC).

9 But the importance of IP addresses in reputation systems is steadily declining, not least because of
cloud-based mail services and their changing IP addresses, and so the E-Mail Competence Group of
the eco Association recommends always attaching DKIM signatures as a "second pledge" and
checking for them when accepting messages, in this case with OpenDKIM.

3.1.1. OpenDKIM

OpenDKIM (https://github.com/trusteddomainproject/OpenDKIM) can verify the DKIM signatures of incoming messages and it
can apply DKIM signatures to outgoing messages. The programme is available in all common Linux distributions and
its behaviour is usually controlled via the file /etc/opendkim.conf .

The following example configures OpenDKIM to bind locally to the IP address 127.0.0.1 on TCP port 8892 using
thesocket parameter to wait there for incoming messages and to verify their DKIM signatures, if available.

/etc/opendkim.conf
CONF
Syslog true
Socket inet:8892@127.0.0.1
AuthservID mx.example.com
Mode Y

The AuthservID parameter determines which identity OpenDMARC uses,
when it enters its check results in an Authentication-Results: header.

The Mode parameter specifies with the v option that OpenDKIM should verify emails.

3.1.2. OpenDMARC

OpenDMARC (https://github.com/trusteddomainproject/OpenDMARC) checks whether incoming messages conform to the
DMARC policy of the From-Header Domain, optionally generates DMARC reports and (also optionally) checks whether
sending servers are authorised to send on behalf of the domain according to the SPF policy of the Envelope Sender
Domain. A detailed functional description is provided by the Trusted Domain Project
(http://www.trusteddomain.org/opendmarc), which develops and publishes OpenDMARC.

OpenDMARC Milter must be included in the MTA as MILTER according to OpenDKIM. The DKIM
0 check must be completed and an Authentication-Results: header entered when OpenDMARC
starts checking for SPF and DMARC.

The behaviour of the application is usually controlled with the help of the configuration file /etc/opendmarc.conf.In
the following example, OpenDMARC is configured to bind locally to the IP address 127.0.0.1 on TCP port 8893, wait
there for incoming messages, perform an SPF check, evaluate the Authentication-Results: header, which the
preceding OpenDKIM has already inserted, and then check the DMARC policy of the From-Header Domain — if
available.

/etc/openmarc.conf


https://github.com/trusteddomainproject/OpenDKIM
https://github.com/trusteddomainproject/OpenDMARC
http://www.trusteddomain.org/opendmarc

CONF
Syslog true

Socket inet:8893@127.0.0.1
AuthservID mx.example.com
TrustedAuthservIDs mx.example.com
SPFSelfValidate true

RejectFailure yes

OpenDMARC can be accessed via an inet socket orviaa local socket from the MTA.

The AuthservID option specifies which identity OpenDMARC uses when it enters its check results in an
Authentication-Results: header.

This option determines which existing Authentication-Results: headers OpenDMARC trusts and which it
ignores. The identity of the upstream OpenDKIM in this section must be listed here so that OpenDMARC
includes its check results in its DMARC policy check.

The SPF check is always done by OpenDMARC with SPFIgnoreResults true With SPFSelfValidate true,
SPF is only checked by OpenDMARC if no SPF check is otherwise present in the Authentication-Result:

header.

OpenDMARC does not reject any emails without being configured to do so. To do this, one must explicitly set
RejectFailure yes.

3.2. Monolithic processing

Monolithic processing means all processing steps for SPF, DKIM and DMARC take place in one application. The most
popular software for this is the programme rspamd .

3.2.1.rspamd

rspamd (https://rspamd.com/downloads.html) is more than just a programme to perform email authentication. While it
started as a high-performance replacement for the SpamAssassin software, rspamd has been expanded over time
into an all-in-one solution. It offers many filter functions (https://rspamd.com/doc/) and is constantly updated and
expanded.

As delivered, rspamd already checks whether a From header domain has a DMARC policy and notes the check results
in the header of the corresponding email, but it does not perform the actions associated with the DMARC policy.
Activate these actions with the following configuration:

/etc/rspamd/local.d/dmarc.conf

. CONF
actions = {

quarantine = "add_header";
reject = "reject";

4. Sending DMARC feedback reports

By sending DMARC feedback reports, email receivers are acting for the benefit of all participants of the DMARC
ecosystem by providing feedback on the SPF / DKIM / DMARC compliance of their mail domain. Feedback reports
report possible identity misuse as well as possible DMARC configuration errors, which benefits the stability of the
entire ecosystem.

The goal of the DMARC policy of a from-header domain is ultimately always to set the policy level to either

quarantine or reject.Only then there any kind of protection! The lowest policy level none is reserved for harmless
testing of the SPF and DKIM settings. It is usually set until the From header domain has reached a "strict alignment" of
its emails and then iteratively made more restrictive.


https://rspamd.com/downloads.html
https://rspamd.com/doc/

Especially in this trial phase, it is important for senders to receive DMARC feedback reports. The external view of the
transmission behaviour of their domain makes it visible to them whether adjustments to their SPF policy are still
necessary and/or whether DKIM signatures validate cleanly.

DMARC feedback reports are sent from the receiving mail platform to one or more email addresses noted in the
DMARC policy of the From header domain. The DMARC standard distinguishes between two types of DMARC feedback
reports:

"Forensic" / "Failure" Reports

"Forensic reports" are detailed reports that are sent for each violation of a DMARC policy. From a data protection
perspective, it can happen that such a report passes on personal and thus sensitive information, which is why
forensic reports are controversial. This type of report is written in the so-called AFRF format and is sent to the
address(es) specified with the ruf tagin the DMARC DNS TXT record.

"Aggregated" Reports

An "aggregated report” summarises the events that affect a sender domain with DMARC policy in aggregated form at
a certain time interval (daily is recommended). The report is created as a compressed XML file and sent to the
address(es) specified in the rua tagin the DMARC DNS TXT record.

Sending aggregated reports is a two-part process: First, the DMARC test results are collected and then, at a certain point
in time, reports are generated from them and sent. The following "Best Practices" for sending are based on
recommendations and experiences of the E-Mail CG.

4.1. Best practices for sending

If your report service sends notifications about possible abuse of a sender domain, receivers must be able to trust it
and their service must handle the perhaps personal data with confidence. We, therefore, recommend the following
measures:

1. Avoid sending failure reports. Under certain circumstances, the sending of failure reports can even be legally
problematic, as personal data, such as the receiver’s email address or the subject, is mentioned in failure reports.
The Report on the compliance of DMARC with the EU GDPR

(https://certified-senders.org/wp-content/uploads/2018/08/Report DMARC_and_GDPR.pdf)https://certified-senders.org/wp-
content/uploads/2018/08/Report_ DMARC_and_GDPR.pdf, which the eco E-Mail Competence Group commissioned as
a legal opinion, shows in detail when failure reports are GDPR-compliant and when they violate the GDPR.

2. Always use a separate domain or subdomain as the sending domain for reports so that the sending behaviour of
this (sub)domain does not negatively influence the reputation of your main domain (because reports contain IP
addresses — or in the case of failure reports, even content — of spammers/phishers).

3. Use your own dedicated IP address for sending the reports, because this IP address could also get a bad reputation.

4. Add a DKIM signature to reports so that receivers can verify beyond doubt that the report originates from your
service and that it can thus build up a good reputation over time.

5. Create a separate DMARC policy for the report (sub)domain and do not request failure reports or aggregated
reports for this (sub)domain so that no infinite report loop can occur between your report domain and other mail
platforms.

6. If your mail service consists of several mail servers that should all send reports, then only use one report service
for all servers. Collect the report data centrally in a database and let the report service generate the aggregated
reports based on all the information stored there.

7. Have your report service send aggregated reports only once a day. Do not send at exactly 00:00, because the volume
of reports generated worldwide would otherwise be tantamount to a DDoS attack for the receiving platform.


https://certified-senders.org/wp-content/uploads/2018/08/Report_DMARC_and_GDPR.pdf

8. Count on backscatter! Some receivers accept reports and respond to them just a few seconds later with a bounce
email or a delivery notification (DSN). Think about where all these mails should end up.

9. A noticeable proportion of receiver addresses named in the rua tag name mailboxes for which the target system
does not accept messages. The reports will remain in the mail queue of your MTA until they bounce. You should
delete reports that cannot be delivered and possibly exclude the receiver addresses from delivery.

10. The sending own mailbox should have enough rate limit so that the reports can all be sent. Often thousands of
reports are sent within seconds.

4.2. DMARC feedback reports with OpenDMARC

OpenDMARC collects data that it will use for reports in a file. The path to this file is specified with the help of the
HistoryFile parameter. The file itself must be readable and writable for the user with whom OpenDMARC is

operated.
Failure reports are best redirected to yourself:

/etc/opendmarc.conf
CONF

CopyFailuresTo postmaster@mx.example.com
FailureReportsSentBy postmaster@mx.example.com

FailureReports yes

FailureReportsOnNone true

ReportCommand /usr/sbin/sendmail userpart@sub.domain.tld
FailureReportsBcc localpart@example.net

Do not specify sendmail -t here

If you (still want to) send failure reports, you can use FailureReportsBcc
to always send them to themselves and thus follow what is being reported.

OpenDMARC Multi-Host Reporting

If your mail platform uses several servers, each of which integrates separate OpenDMARC instances,
you should collect their data in a central location and have the reports generated centrally. This
facilitates the evaluation for the recipient of the report.

To do this, create a cronjob / systemd timer and let theopendmarc-import programme periodically
9 write the data of each OpenDMARC instance to a central database:

SH
% opendmarc-import --dbhost=hostname --dbname=name --dbpasswd=password --dbport=port

Then create a second cronjob / systemd timer and let the opendmarc-reports programme generate
and send reports centrally. You control the interval at which reports are generated and sent
withinterval=secs. If you do not want to send the reports locally, but via a specific other server,
specify this with the parameters smtp-host and “smtp-port.

4.3. DMARC feedback reports with rspamd

rspamd collects data, which it will use for reports, in one or more redis databases. You must explicitly enable the
generation and sending of reports by activating and configuring the reporting section in the file

/etc/rspamd/local.d/dmarc.conf:

/etc/rspamd/local.d/dmarc.conf



CONF
servers = "192.2.0.1:6379";

reporting {
enabled = true;

email = 'dmarc_reports@sub.example.com';
domain = 'example.com';
org_name = 'Example organisation';

bcc_addrs = ["postmaster@example.com"];
smtp = '127.0.0.1";
smtp_port = 25;

from_name = 'example.com DMARC report';
helo = 'example.com';
msgid_from = 'example.com';

Here you can, if required, deviate from the central redis configuration
for rspamd and specify into which redis-DB DMARC report data should be written.

Here you define the envelope sender address that rspamd will use to send the reports.

The receiver domain in whose name the reports are generated.

Enter the name of your organisation here.

If you always want to send the reports to other addresses as well, you can specify a list of addresses here.
This parameter specifies the SMTP server to be contacted for dispatch

This parameter specifies the TCP port of the SMTP server to be contacted for sending.

This parameter sets the display name of the sender (default is: "Rspamd")

HELO in SMTP dialogue

Message-Id Format

Once rspamd has collected DMARC check results, you can start sending them in reports. To do this, create a cronjob /
systemd timer that periodically evaluates the data of the previous day (!) and sends it as reports:

SH
% 27 3 * * * rspamadm dmarc_report

rspamd Multi-Host Reporting

If your mail platform uses several servers, each with its own rspamd instances, you should collect
their data in a central location and generate the reports centrally. This facilitates the evaluation for

0 the recipient of the report.

Configure all rspamd instances to send their report data to the central redis database and have only
one host run the cronjob / systemd timer that periodically generates and sends reports.

1. An expert email service provider will check whether SPF, DKIM and DMARC are correct before sending out the newsletter, draw
attention to possible problems and point out possible solutions



